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Following chronic liver injury, hepatocytes undergo apoptosis leading to activation of hepatic stellate cells (HSC). Consequently,
activated HSC proliferate and produce excessive extracellular matrix, responsible for the scar formation. The pandemic trend
of obesity, combined with the high incidence of alcohol intake and viral hepatitis infections, highlights the urgent need to find
accessible antifibrotic therapies. Treatment strategies should take into account the versatility of its pathogenesis and act on all the
cell lines involved to reduce liver fibrosis. Medicinal plants are achieving popularity as antifibrotic agents, supported by their safety,
cost-effectiveness, and versatility. This review will describe the role of hepatocytes and HSC in the pathogenesis of liver fibrosis and
detail the mechanisms of modulation of apoptosis of both cell lines by twelve known hepatoprotective plants in order to reduce

liver fibrosis.

1. Introduction

Fibrosis is an inappropriate tissue repair of the liver resulting
from almost all of the chronic liver injuries including alcohol
induced damage, chronic viral hepatitis, autoimmune, para-
sitic, and metabolic diseases and less frequent, toxic, or drugs
exposure [1]. When fibrosis is not controlled, it can further
progress into cirrhosis. In contrast with the traditional idea
that cirrhosis is an irreversible state, there is solid evidence
indicating that fibrosis even cirrhosis could be reversible [2].

Liver fibrosis is an important public health concern with
significant morbidity and mortality [3]. Hundreds of millions
of people worldwide suffer from cirrhosis [4]. Chronic viral
hepatitis B and C, alcoholic liver diseases, and nonalcoholic
fatty liver diseases are the three most common causes [5].
Prevalence of chronic liver diseases, hence hepatic fibrosis-
cirrhosis, is predicted to increase, due in part to the rising

prevalence of obesity and metabolic syndrome, especially in
developed countries [6].

Pathogenesis of liver fibrosis is complex and varies
between the different kinds of hepatic injuries. Usually after
an acute liver damage, parenchymal cells regenerate and
replace the necrotic and apoptotic cells; this process is associ-
ated with an inflammatory response and a limited deposition
of extracellular matrix (ECM). When the injury persists,
eventually the regenerative response fails and the hepatocytes
are substituted by abundant ECM mainly composed by
collagen type I-III-IV, fibronectin, elastin, laminin, and pro-
teoglycans. Hepatic stellate cells (HSC) are the main sources
of ECM [7].

There is no standard treatment for liver fibrosis, although
it is known that reducing liver injury events, such as inter-
ruption of alcohol intake or successful treatment of viral hep-
atitis, contributes to the control of the process. Nevertheless,
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FIGURE 1: Anti-liver fibrosis of medicinal plants targeting apoptosis of hepatocytes and hepatic stellate cells. (1) C. longa, S. marianum, G.
biloba, S. miltiorrhiza, G. glabra, S. baicalensis, Phyllanthus species, B. aristata, P. kurroa, Ginseng species, A. paniculata. (2) C. longa, G.
biloba, S. miltiorrhiza, G. glabra, S. baicalensis, B. falcatum, and Ginseng species.

these actions do not seem to be sufficient, in the vast majority
of patients, to avoid progression to cirrhosis [8]. Even though
important advances have been made in the knowledge of the
pathogenesis of hepatic fibrosis for the past 20 years, there
are still important gaps to translate this basic information
into efficient antifibrotic drugs. Treatment strategies for
liver fibrosis should take into account the versatility of its
pathogenesis and acting on all the cell lines involved starting
with HSC and hepatocytes.

Supported by their safety, cost-effectiveness, and versatil-
ity, medicinal plants enjoy a growing popularity as antifibrotic
agents. We already reviewed how medicinal plants reduce
liver fibrosis by inhibiting HSC activation and reducing ECM
deposition [9]. However, other antifibrotic mechanisms could
explain this activity such as modulation of apoptosis of differ-
ent cell lines. This review focuses on two more ways by which
the bioactive compounds from twelve known hepatoprotec-
tive plants, including Curcuma longa, Silybum marianum,
Ginkgo biloba, Salvia miltiorrhiza, Glycyrrhiza glabra, Scutel-
laria baicalensis, Bupleurum falcatum, Phyllanthus species,
Berberis aristata, Picrorhiza kurroa, Ginseng species, and
Andrographis paniculata, reduce liver fibrosis by targeting
apoptosis: the induction of HSC apoptosis and the protection
of hepatocytes from apoptosis (Figure 1).

2. Induction of HSC Apoptosis
2.1. Role of HSC in the Pathogenesis of Liver Fibrosis. Quies-

cent HSC act as the major vitamin A-storing cells located in
the perisinusoidal space of Disse between the basolateral

surface of hepatocytes and the antiluminal side of sinusoidal
endothelial cells [10]. HSC are the key effectors in the devel-
opment of liver fibrosis.

The process of liver fibrosis initiates with HSC activation;
this is mainly due to several mediators’ effects, like reactive
oxygen species (ROS), lipid peroxidation (LPO) products,
and fibrogenic cytokines such as transforming growth factor
beta (TGF-p1) and platelet derived growth factor (PDGF).
These substances come from damaged hepatocytes, as we
detailed below, and/or activated Kupffer cells, macrophages,
and platelets following hepatic injury [11, 12]. Activated HSC
acquire different phenotypes such as enhanced production of
ECM, expression of contractile smooth muscle a-actin (-
SMA), enhanced proliferation, secretion of pro-inflamma-
tory cytokines, and release of matrix-degrading enzymes and
their inhibitors [13]. Activated HSC remain the main contrib-
utors of major and minor matrix proteins of the fibrotic liver
including types I, III, and IV collagens, fibronectin, laminin,
and proteoglycans [11, 14] even though many other cells,
including portal fibroblasts, circulating cells from the bone
marrow, hepatocytes, and biliary epithelial cells that undergo
an epithelial to mesenchymal transition, also produce ECM
(15].

Activated HSC are also characterized by an enhanced
survival. Hepatic macrophages promote the survival of acti-
vated HSC in a nuclear factor-kappaB- (NF-xB-) dependent
manner and thereby promote liver fibrosis [16]. However,
inhibition of NF-«B pathway reverses hepatic fibrosis by
stimulating HSC apoptosis [17], thereby highlighting selec-
tive induction of HSC apoptosis as a promising strategy to
treat liver fibrosis [4, 18-21].
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TABLE 1: Mechanisms of induction of hepatic stellate cells apoptosis by medicinal plants.

Bioactive compounds Typesof  Cell lines/animals used . . . .
Plants and/or extracts study (fibrogenic inducers) Mechanisms of induction of HSC apoptosis
I1[25] PCR-HSC Tcaspase-3, | Bcl-2, TPPAR-y and |NF-xB
I[26] PCR-HSC TPPAR-y, TBax, |Bcl-2 and Tcaspase-3
127 PCR-HSC TPPAR-y
. 1128] PCR-HSC TBax, | Bcl-2, TPPAR-y, |ERK, |JNK and
C. longa Curcumin IPI-3K/AKT
I[29] PCR-HSC TPPAR-y, TBax, |Bcl-2 and | NF-«B p65
PCR-HSC and SD rats
I, IT [30] (ccl,) Tcaspase-3
I[31] HSC-T6 (TGF-f1) Tcytochrome c release
132] rgiﬁii::}gg?r::e Modulate BAX and FLIP and | Wnt signaling
HSC P pathway components AXIN2 and FRA1
I [33] CFSC Tcaspase-3
1H764-3 I [34] HSC (H,0,) LERK
11 [35] SD rats (BDL) |FAK, |p-FAK, |ERK and | p-ERK
Tanshinone I 1[36] T-HSC/CL6 Tcaspase-3, TPARP, Tcytochrome c release and
|MMP
S. miltiorrhiza Tcaspase-3, TPARP, Tcytochrome c release, TBax,
L 1[37] T-HSC/Cl-6 [Bel2 and [MMP
anshinone [TA s .
HSC-T6 and Wistar rats Tprohibitin, TC-Raf plembrane tanslocation, TpERK,
I, II [38] (DMN) LAKT phosphorylation, TBax, | Bcl-2, Tcytochrome ¢
release, Tcaspase-3, Tcaspase-9 and TPARP cleavage.
Salvianolic acid A 1[39] HSC-T6 (PDGF-BB) LAKT phosphorylation, Tcaspase-3 and |Bcl-2
T-HSC/Cl-6 and SD rats  Tcaspase-3, Tcaspase-8, Tcaspase-9, TPARP cleavage,
PE2AOLSE LIL[40] (ccl,) TBax and | Bel-2
Root of S. miltiorrhiza I [41] HSC-Té6 TBax, TFas and | Bcl-XL
G. glabra 18a-glycyrrhizin I,II[23] CFSCand SD rats (CCl,) |NF-xB
B. falcatum Saikosaponin A and D 1[42] HSC-T6 |ERK
20-O-beta-D-
glucopyranosyl-20(S)- I[43] T-HSC/CI-6 IMMP, Tcaspase-3 and TPARP cleavage
P notoginseng ~ protopanaxadiol
Tcaspase-3, |survivin, | Bcl-2, Tc-FLIP|, | c-FLIPq,
25-OCH;-PPD 1[44] T-HSC/Cl-6 (TNF-a) | XIAP, TNF-xB p65 nuclear translocation and

1IxkB-a

Abbreviations: T: inductor effect, |: inhibitor effect; I: in vitro; II: in vivo; AKT: protein kinase B; Bax: Bcl-2-associated X protein; Bcl-2: B-cell lymphoma
2; Bcl-XL: B-cell lymphoma-extralarge; BDL: bile duct ligation; c-FLIP; : cellular FLICE (FADD-like IL-13-converting enzyme)-inhibitory protein (isoform
L); c-FLIPg: cellular FLICE- (FADD-like IL-1j3-converting enzyme-) inhibitory protein (isoform S); CCly: carbon tetrachloride; CFSC: hepatic stellate cell
line; DMN: dimethylnitrosamine; ERK: extracellular signal-regulated kinases; FAK: focal adhesion kinase; H,O,: hydrogen peroxide; HSC: hepatic stellate
cells; HSC-T6: immortalized rat liver stellate cell line; IxkB-a: inhibitor of nuclear factor kappaB alpha; JNK: c-Jun N-terminal kinases; MMP: mitochondrial
membrane potential; NF-«xB: nuclear factor kappaB; NF-«xB p65: p65 subunit of nuclear factor kappaB; p-ERK: phosphorylated extracellular signal-regulated
kinases; p-FAK: phosphorylated focal adhesion kinase; PARP: poly ADP ribose polymerase; PCR-HSC: primary cultured rat hepatic stellate cells; PDGF-BB:
platelet derived growth factor-BB; PI-3K/AKT: phosphatidylinositide 3-kinases/protein kinase B; PPAR-y: peroxisome proliferator-activated receptor gamma;
SD: Sprague-Dawley; TGE-I: transforming growth factor beta I; T-HSC/CI-6: rat hepatic stellate cells transformed by simian virus 40; TNF-a: tumor necrosis
factor alpha; XIAP: X-linked inhibitor of apoptosis protein.

2.2. Hepatic Stellate Cells as Targets of Antifibrotic Medicinal
Plants. Twenty-three articles were chosen (Table1). Cur-
cumin from C. longa and bioactive compounds from S. mil-
tiorrhiza, including IH764-3, tanshinones I and IIA, and sal-
vianolic acid A, are by far the most investigated, followed by
compounds extracted from Ginseng species. Consequently,
their mechanisms of induction of HSC apoptosis have been

well characterized. On the opposite, apoptosis induction by
G. biloba extract [22], 18a-glycyrrhizin from G. glabra [23],
baicalin from S. baicalensis, and saponins from B. falcatum
[24] have only been observed; thus, their mechanisms need to
be clarified. No proof that S. marianum, Phyllanthus species,
B. aristata, P. kurroa, and A. paniculata produce compou-
nds that induce HSC apoptosis exists. The apoptotic events



induced by medicinal plants present similarities since they all
act by modulating mitochondrial caspases cascade. However,
different targets have been identified upstream to the apop-
totic cascade.

Curcumin increases and decreases Bcl-2-associated X
protein (Bax) and B-cell lymphoma 2 (Bcl-2) expressions,
respectively [25, 26, 28, 29], promotes cytochrome c release
from mitochondria into cytoplasm [31], and increases cas-
pase-3 activity [25, 26, 30] in primary cultured rat HSC.
Induction of apoptosis by curcumin correlates with its
inhibitory effect on NF-«B [29], which involves the stimula-
tion of gene expression of peroxisome proliferator-activated
receptor gamma (PPARy) [25-29] by blocking TGF- 5, PDGEF,
and epidermal growth factor (EGF) signaling pathways
through interruption of extracellular signal-regulated kinases
(ERK), c-Jun N-terminal kinases (JNK), and phosphatidyli-
nositide 3-kinases/protein kinase B (PI-3K/AKT) pathways
[28]. Additionally, modulation of BAX and cellular FADD-
like IL-13-converting enzyme- (FLICE-) like inhibitory pro-
tein (c-FLIP) (CASP8 and FADD-like apoptosis regulator)
expressions and reduction of the expression of Wnt signaling
pathway components, axis inhibition protein 2 (AXIN2), and
FOS-like antigen 1 (FRA1) mediate induction of HSC apop-
tosis by curcumin in human telomerase reverse transcriptase
HSC [32].

Root of S. miltiorrhiza promotes HSC apoptosis by incr-
easing Bax and Fas expressions and decreasing B-cell lym-
phoma-extralarge (Bcl-XL) expression in vitro in HSC-T6
cells [41]. Monomer IH764-3, tanshinone I, tanshinone IIA,
salvianolic acid A, and fraction PF2401-SF (tanshinone I,
tanshinone ITA, and cryptotanshinone) mediate proapoptotic
effects of S. miltiorrhiza root. Like curcumin, they act via
increasing Bax/Bcl-2 ratio [37-40], decreasing mitochondrial
membrane potential (MMP) [36, 37], inducing cytochrome
¢ release [36-38], stimulating poly ADP ribose polymerase
(PARP) cleavage [36-38, 40], and enhancing caspase-3 and 9
activities [33, 36-40]. IH764-3 downregulates the expression
of focal adhesion kinase (FAK) and phosphorylated FAK,
ERK, and phosphorylated ERK to promote HSC apopto-
sis [34, 35]. Tanshinone IIA acts by enhancing prohibitin
expression, inducing intracellular translocation of the cytoso-
lic C-Raf protein to the membrane, increasing p-ERK, and
suppressing AKT phosphorylation, thereby indicating that
tanshinone ITA induces apoptotic cell by promoting binding
between prohibitin and C-Raf which in turn activates mito-
gen activated protein kinases (MAPK) pathway and conse-
quently Bax/caspase cascade [38]. Interestingly, salvianolic
acid A also reduces AKT phosphorylation [39].

Saponins from P. notoginseng induce HSC of apoptosis in
vitro but their mechanisms have not been investigated [24].
20-O-Beta-D-glucopyranosyl-20(S)-protopanaxadiol, a gin-
senoside metabolite, triggers apoptosis in activated HSC by
reducing MMP and increasing caspase-3 activity and PARP
cleavage [43]. Moreover, 25-OCH3-PPD, a dammarane-type
triterpene isolated from P. notoginseng, induces the apoptosis
of HSC activated by tumor necrosis factor alpha (TNF-
«). 25-OCH3-PPD increases the level of cleaved caspase-3,
downregulates the ratio of Bcl-2/Bax, and the expression of
caspase-3 inhibitor survivin. This effect takes place through
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increasing the expression of c-FLIPL and decreasing c-
FLIPs and X-linked inhibitor of apoptosis protein (XIAP)
expressions, which lead to NF-«B activation via degradation
and phosphorylation of inhibitor of NF-xB alpha (IxBe«) and
translocation of p65 subunit into the nucleus [44].

3. Protection of Hepatocytes from Apoptosis

3.1 Role of Hepatocytes in the Pathogenesis of Liver Fibrosis.
Hepatocytes account for about 80% of the liver. Under chron-
icliver injury, hepatocytes undergo apoptosis liberating hepa-
tocyte-derived apoptotic bodies [45]. This initial event is no
longer viewed as a silent consequence of liver injury but
rather as a potent inductor of liver fibrosis [46]. Profibrogenic
response following hepatocytes apoptosis is enabled by the
capacity of HSC to perform phagocytic function [46, 47].
Phagocytosis of the hepatocyte-derived apoptotic bodies
directly induces HSC activation and matrix deposition as it
up-regulates TGF- 1 and induces collagen «1(I) through PI-
3K and p38MAPK pathways [46, 48, 49]. This profibrogenic
event requires nicotinamide adenine dinucleotide phosphate
reduced (NADPH) oxidase activation [46, 50]. Concurrently,
an indirect signal mediated by the generation of damage-
associated molecular patterns (DAMPs) results in HSC
activation [49]. DNA from apoptotic hepatocytes induces
HSC differentiation by upregulating TGF-f1 and collagen
expression and inhibiting chemotaxis of HSC, so mobile HSC
stop when they reach an area of apoptosing hepatocytes, via
toll-like receptor 9 (TLRY) [51]. Adenosine, another product
of apoptosing hepatocytes, has been identified also as a
mediator of fibrogenic cascade [52]. In addition, phagocy-
tosis of apoptotic bodies promotes HSC survival through
Janus kinase/signal transducer and activator of transcription
(JAK/STAT) and AKT/NF-xB-dependent pathways, con-
tributing to progression of liver fibrosis [53]. Thus therapeutic
strategies, which aim to protect hepatocytes from apoptosis,
could be useful to reverse liver fibrosis [54].

3.2. Hepatocytes as Targets of Antifibrotic Medicinal Plants.
Thirty-two articles were selected (Table 2). It has been dem-
onstrated that all the reviewed plants, except B. falcatum,
produce compounds that inhibit apoptosis of hepatocytes
induced by a wide range of agents, including ethanol, iron,
carbon tetrachloride (CCly), tert-butylhydroperoxide (t-
BHP), toxic bile salts (glycochenodeoxycholic acid [GCDC]),
thioacetamide (TAA), lipopolysaccharide (LPS) with D-gal-
actosamine (D-GalN), concanavalin A (Con A), high free
fatty acids (HFFAs), and so forth. Most investigated com-
pounds are those of C. longa, G. biloba, S. miltiorrhiza, and G.
glabra. Almost all the bioactive components from reviewed
plants act similarly by inhibiting mitochondrial pathway of
apoptosis and reducing oxidative stress.

Curcumin inhibits ethanol-, iron-, and HFFAs-induced
apoptosis in primary cultured rat hepatocytes [55-57]. Cur-
cumin regulates mitochondrial biogenesis [57], inhibits LPO
[55] and ROS synthesis [56, 57], downregulates Bcl-2 and
Bcl-XL expressions [56], inhibits cytochrome c release [55],
restores MMP [57], and suppresses caspase-3 activity [56].
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Cytoprotective effects of curcumin are mediated by downreg-
ulation of NF-«B activity [56], especially p65 subunit [57].

Glycyrrhizin, also known as glycyrrhizin acid, is the main
bioactive component from G. glabra. Glycyrrhizin protects
hepatocytes from apoptosis in vitro and in vivo. In vitro,
it prevents glutathione depletion, decreases ROS generation
and LPO, and increases superoxide dismutase (SOD) activity,
highlighting the importance of its antioxidant properties to
inhibit hepatocytes apoptosis [70]. It also inhibits MMP,
cytochrome c release, p38 activation, and caspases-3 and -9
activities [70, 75]. Additionally, it decreases nitric oxide (NO)
and intercellular adhesion molecule 1 (ICAM-1) expression
[72]. Involvement of caspases pathway inhibition has also
been observed in vivo [71, 73]. Nevertheless, protection of
hepatocytes could also occur through caspases-independent
pathway related to the inhibition of the release of interleukin-
18 [74].

S. miltiorrhiza bioactive components include tanshinones
and salvianolic acids. PF2401, a standardized fraction of root
of S. miltiorrhiza, and its components tanshinone I, tanshi-
none IIA, and cryptotanshinone, protect primary cultured
rat hepatocytes from GCDC-, LPS-, and ethanol-induced
apoptosis by inhibiting MAPK pathway via blockage of JNK
and p38 phosphorylations [66], lipid accumulation, and
activation and transactivation of genes involved in fatty acid
biosynthesis through suppression of the nuclear translocation
of sterol regulatory element binding protein-1 (SREBP-1) [67].
Besides, tanshinone IIA inhibits synthesis of ROS and reac-
tive nitrogen species, fatty acid synthesis, and the opening
of mitochondrial permeability transition and stimulates fatty
acid oxidation by decreasing and increasing stearoyl-CoA
desaturase-1 (SCD1) and retinoid-X receptor-alpha (RXR-«),
respectively, in LPS-, ethanol-, and CCl4-treated primary
cultured rat hepatocytes [62, 64]. In vivo, its antiapoptotic
properties have been related to the downregulation of insulin-
like growth factor-binding protein 7 (IGFBP7) [63]. Finally,
protection of hepatocytes from apoptosis by salvianolic acid
B is associated with its ability to reduce the expression of
tumor necrosis factor alpha receptor type 1 (TNFRI1), balance
the expression of Bcl-2 family members, decrease release of
cytochrome ¢, and inhibit caspase-3 in vitro and in vivo [69].

Bioactive extract of G. biloba (EGB) is composed of 6%
of terpenes and 24% of flavonols heterosides. EGB inhibits
technetium 99mTc-, ethanol-, and CCl,-induced apoptosis
in rats principally by reducing oxidative stress via inhibit-
ing LPO [59-61], glutathione depletion, promoting SOD,
glutathione peroxidase (GPx), and catalase (CAT) activities
and upregulating heme oxygenase-1 (HO-1) expression and
activity [60]. It also reduces p53/Bcl-2 ratio [61].

4. Highlights

In this review, we highlighted the polyvalence of C. longa, S.
marianum, G. biloba, S. miltiorrhiza, G. glabra, S. baicalensis,
B. falcatum, Phyllanthus species, B. aristata, P. kurroa, Ginseng
species, and A. paniculata and respective bioactive com-
pounds and extracts to reduce liver fibrosis targeting apop-
tosis of hepatocytes and activated HSC. By protecting hepa-
tocytes from apoptosis, medicinal plants are able to inhibit

the liberation of hepatocyte-derived apoptotic bodies and
DAMPs, some of the initial profibrogenic stimuli that con-
verge to activation and survival of HSC, while inducing
apoptosis of activated HSC; they eliminate the main source
of ECM. Regulation of mitochondrial pathways of apoptosis
by vegetal compounds mainly explains the induction and
protection of apoptosis in vitro and in vivo.

To induce apoptosis of activated HSC, medicinal plants
increase proapoptotic proteins, such as Bax and Fas, and decr-
ease antiapoptotic proteins, like Bcl-2 and Bcl-xl. The increase
in Bax/Bcl-2 ratio stimulates the release of cytochrome c
from mitochondria into cytosol through MMP. The release
activates initiator caspases (caspases-8 and -9) which leads to
activation of executioner caspases such as caspase-3, respon-
sible for the apoptotic process eventually through cleavage of
PARP, a protein involved in repairing DNA damage. Opposite
effects mediate the antiapoptotic properties of medicinal
plants to protect hepatocytes.

NF-xB, a transcription factor involved in inflammatory
and apoptotic response, seems to play an intermediary role
in the modulation of apoptosis of activated HSC and hepa-
tocytes. Interestingly, inhibition of NF-«B activity results in
opposite effects in activated HSC and hepatocytes. Medicinal
plants downregulate NF-«B activity in activated HSC leading
to inhibition of survival and promotion of apoptosis. On the
contrary, inhibition of NF-xB activity results in the protection
from cell death in hepatocytes. Involvement of NF-«xB in
both antifibrotic activities suggests a common stimulus of
activation of this transcriptional factor between medicinal
plants. Antioxidant properties of bioactive compounds from
reviewed plants could explain such a similarity. Indeed, NF-
kB is regulated by the intracellular redox state thereby imply-
ing that antioxidant compounds of reviewed medicinal plants
reduce chronic liver injury-induced oxidative stress which
is sensed by NF-«B resulting in modulation of apoptosis in
hepatocytes and HSC [87].

Antiliver fibrosis mechanisms of medicinal plants have
been mostly studied in liver fibrosis models in vitro and in
vivo. Clinical studies are sparse and mainly use chronic hep-
atitis B and C patients to assess the hepatoprotective effects of
medicinal plants. Consequently, more clinical investigations
on fibrosis induced by other agents than HBV and HCV are
urgently needed. Silymarin, glycyrrhizin, and Salvia miltior-
rhiza have been more or less successfully tested. Glycyrrhizin
could benefit patients with chronic hepatitis C nonresponders
or unlikely respond to interferon therapy by decreasing ala-
nine transaminase and improving necroinflammation [88-
91]. Silymarin has also been tested in patients infected with
HCV. However, contradictory results, as well as its low bio-
availability, have not been able to conclude about its clinical
efficacy [92-95]. Finally, Salvia miltiorrhiza injection and one
of his bioactive compounds, salvianolic acid B, could be rele-
vant in the treatment of hepatitis B [96-99].

Besides HSC and hepatocytes, inflammatory and imm-
une cells take part actively in the fibrogenic response. In addi-
tion, important events, including HSC activation, ECM depo-
sition, inflammation, and oxidative stress, are involved in the
pathogenesis of liver fibrosis. Such targets could be relevant
to reducing hepatic fibrosis. The extensive literature search



made as part of this review evidenced other mechanisms
besides the ones described here, by which medicinal plants
reduce liver fibrosis, including previously reviewed inhibition
of HSC activation and reduction of ECM deposition [9],
as well as lowering of oxidative stress and suppression of
inflammation and immune response.

5. Conclusion

Medicinal plants could be a source of polyvalent antiliver
fibrosis compounds targeting apoptosis of hepatocytes and
activated HSC. The importance of knowing the main mecha-
nisms, by which medicinal plants act as antifibrotic agents,
provides options for the development of pharmaceutical
compounds and their subsequent use in medical practices.
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